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The theoretical basis for a new computational method is presented for the solution 
of flow problems of microstructured fluids : examples include suspensions of rigid 
particles and polymeric liquids ranging from liquid crystals to concentrated solutions 
or melts of flexible chains. The method is based on a Lagrangian conservation 
statement for the distribution function of the conformation of the local structure, 
which can be derived from the conventional, Eulerian conservation statement and is 
exactly equivalent. The major difference, which is reflected in the numerical 
technique, is that the Lagrangian representation of the distribution function allows 
for computation of the Brownian contribution and of moments of distribution 
functions in ways that do not require explicit knowledge of the distribution function, 
and involve no approximation whatsoever. This suggests a new type of efficient, self- 
adaptive numerical scheme that is suitable for the solution of flow problems of 
microstructured fluids, in which macroscopic properties depend on the state of the 
microstructure. 

1. Introduction 
The flow of fluids with complex local structure (i.e. suspensions of particles, 

droplets, models of polymer molecules, polymer melts, etc.) has received much 
attention due to the technological importance of the subject. Drag reduction in dilute 
polymer solutions, emulsification, and the dynamics of filler particles in a flowing 
composite material are all consequences of the stretching and orienting effect which 
the flow has on microstructure. 

Constitutive theories for these materials, based on a microstructural approach, 
attempt to relate the local stress in the fluid to the statistical distribution of stretch 
and orientation of the local structure. Macroscopic properties are generally 
determined by some moment(s) of the distribution function for microstructure 
conformation. A statistical description in terms of a distribution function is 
necessary in order to  account for (i) a range of different possible initial states of the 
microstructure, and (ii) the randomizing effects of Brownian diffusion, when 
appropriate. 

1.1. The conformation distribution function 
The analysis of the mechanics of microstructured fluids normally begins with the 
development of the microdynamical equation for the state of a single microstructural 
element. The stretching and orienting tendencies of the surrounding flow must be 
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accounted for. Other deterministic effects such as internal viscous or elastic response 
must also be included. Finally, it is also possible to include Brownian diffusion when 
this is known to be important. 

Microdynamical equations have been derived by many researchers, for many types 
of microstructure. In this paper, we shall fix the discussion by assuming that the 
complex fluid is a suspension with a microstructure that consists of uniformly 
distributed ‘particles ’, whose instantaneous conformation can be described by a 
single (state) vector. Further, we assume that the inertia of the particles is 
unimportant to the dynamical response. In  §4, we discuss a wide range of 
microstructured fluids to which the methods we develop may be applied. 

Thus, for the purposes of the general discussion, we shall assume that the state 
vector of a particular microstructural element ( R )  evolves according to an equation 
of the form 

R = B(R;E( t ) ,  p)-uV(logq5). ( 1 . 1 )  

In (l.l),  the deterministic effects (of the surrounding flow, of the internal viscosity 
or elasticity, etc.) are lumped together in the first term 9, which might involve 
(smooth) nonlinear dependence on the director R ,  and also depends on the rate-of- 
strain tensor E(t), the vorticity tensor SZ(t), and on various micromechanical 
parameters ,u = (pl ,  ... , pt). The Brownian diffusion is accounted for through the last 
term, which involves the diffusivity u and the distribution function for the 
conformation of the microstructure, 9, to which we next turn our attention. Note 
that the Brownian term involves a gradient operator ; we emphasize that this is an 
operator in conformation space. Furthermore, since (1.1) applies to a specific 
microstructural element, the time derivative is Lagrangian. 

A number of elements of the microstructure reside in any small material volume 
of the suspension ; we shall refer to the set of such elements as an ensemble. The state 
of an ensemble is conveniently described by a distribution function. These ideas are 
carefully presented in the present context by Bird et al. (1987). The distribution 
function specifies the probability that an element of the microstructure in the 
ensemble will have a particular orientation, stretched length, rotation rate and 
stretching rate. However, as discussed in Bird et al., one normally approximates the 
rotation rate and stretching as having a Maxwellian distribution about the mean, i.e. 
as having the same distribution as if the flow system were in equilibrium. One is then 
left with a distribution function for conformation alone, which is called the 
conformation distribution function (CDF). The Brownian term in (1.1) is the 
velocity-space average of a randomly fluctuating Brownian force. Thus (1.1) really 
describes the dynamics of a velocity-space averaged element of microstructure. This 
point is discussed in detail by Bird et al. (1987), and also in $3.2, below. 

The evolution of the CDF involves a competition between (i) the deterministic 
stretching and orienting tendencies of the flow and the internal micromechanics of 
the particle, which favour certain conformations over others, and (ii) Brownian 
diffusion, which favours a relaxed state. If the microstructure is composed of rigid 
particles, then the relaxed state corresponds simply to an isotropic distribution of 
orientations. If the microstructure is composed of stretchable as well as orientable 
particles (e.g. an elastic dumbbell model for a polymer molecule in solution) then the 
relaxed state is characterized by isotropy in orientation, and by a smooth equilibrium 
distribution of particle lengths that depends on the details of the internal 
micromechanics. 

Mathematically, the evolution of the CDF is described by the Fokker-Planck (or 
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forward Kolmogorov) equation, which is a convection4iffusion equation over 
conformation space, 

-+V.[#&] a# = 0. 
at 

For the microdynamical equation (1.1 ), this specializes to 

w 
at 
- + V * [ # S ( R ;  E( t ) ,  SZ(t), p) ]  = vV2#. 

(1.2a) 

(1.2b) 

We remind the reader that both the Laplace and gradient operators in (1.2) are 
operators in conformation space, while the time derivative is Lagrangian, following 
a specific material point through physical space. 

In summary, understanding the dynamical evolution of the conformation of a 
suspension is a difficult problem. Associated with each material point in the flow is 
a distribution function that evolves according to the Fokker-Planck equation. 
Solution strategies for a large variety of physical problems involving the 
Fokker-Planck equation are reviewed by Risken (1989). In  the mechanics of 
microstructured fluids, however, there is the additional complicating factor that the 
local structure has an effect on the macroscopic properties of the flow ! 

1.2. The macroscopic stress 
To complete our description of the macroscopic properties of complex fluids, we 
require a relationship between the local state of stress in the suspension and the 
conformation of the microstructure. Constitutive theories have been developed for 
many microstructured fluids. These relate the state of stress at a point in physical 
space to the CDF, normally through moments of the distribution function. 

An example is the well-known constitutive relation of Giesekus (1962) for linear 
dumbbell models of dilute polymer solutions. This constitutive relation may be 
written as a decomposition of the stress tensor into a Newtonian part and a non- 
Newtonian part : 

T = TN + T". ( 1 . 3 ~ )  
The Newtonian part is 

TN = -p /+27€,  E 3 #[(Vu) + (VU)t], (1.3b) 

where p is the pressure and 7 is the (Newtonian) solvent viscosity, while the non- 
Newtonian part of the linear dumbbell model is 

r" = a ( R R ) ,  ( 1 . 3 ~ )  

where a is a constant. The second moment ( R R )  depends on the distribution 
function through the definition, 

( R R ) ( t )  = S#(R,  t )  ( R  63 R )  dR. (1.4) 

Note that this moment function associated with a fixed material point contains only 
the Lagrangian dependence on time. 

Thus, it  should be clear that the solution of a flow problem for a microstructured 
fluid is difficult, involving the effect of the flow on the local structure and the coupled 
effect of the local structure on the flow. The suspension must satisfy the macroscopic 
balances of mass and momentum. A part of the momentum equation is the 
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divergence of the non-Newtonian stress, which requires calculation of one or more 
moment(s) of the distribution function associated to each material point. Generally, 
solutions of the flow problem can only be achieved numerically. The principal 
practical difficulty is that one must compute the distribution function for each 
material point. 

To our knowledge, there are two techniques that eliminate the need to compute the 
distribution function in quite general flow problems. These are : (i) the solution of a 
direct moment evolution equation instead of a Fokker-Planck equation, and (ii) the 
double-Lagrangian technique we develop in the present work. In  order to motivate 
the latter development, we first describe the technique of solution of direct moment 
evolution equations ; this is a method with considerable shortcomings, as we show 
below. 

1.3. Direct moment evolution equations 
First we demonstrate by example how one derives a direct moment evolution 
equation. Then we discuss the solution of flow problems with this approach, which 
has been used in a number of recent studies including Lipscomb et al. (1988), Chilcott 
& Rallison (1988) and Rosenberg, Denn & Keunings (1990). 

Because a moment of the distribution function associated with a material point 
depends only on time, its evolution in a Lagrangian framework is governed by an 
ordinary differential equation. As a simple demonstration, consider the example of 
a dilute suspension of rigid particles unaffected by Brownian diffusion. It is well 
known that an isolated, rigid axisymmetric particle rotates in a flow according to the 
equation 

which involves an equivalent velocity gradient tensor, K ,  defined in terms of a shape 
factor G and the vorticity and rate-of-strain tensors R and E, respectively. The shape 
factor G lies (normally) between the extremes 0 (spherical particle) and 1 (infinite- 
aspect-ratio fibre). The orientation distribution function (ODF) f associated with a 
material point of the suspension evolves according to ( 1 . 2 ~ )  with r$ replaced byf. For 
clarity of presentation, we shall use the symbol q4 to denote the distribution function 
for stretchable microstructure, and f to denote the distribution function for rigid 
microstructure. The second moment of the orientation function ( R R )  ( t )  is defined 
by (1.4) with @ replaced by f. Moment evolution equations are normally derived by 
taking the Fokker-Planck evolution for the distribution function, multiplying by RR 
(or RRRR, or etc.), and integrating over conformation space. The result is an 
ordinary differential equation for the moment tensor associated with a material point 
of suspension. The derivation of the moment evolution equation in the present case 
yields 

( 1 . 5 ~ )  

We emphasize that this equation describes the evolution of the second-moment 
tensor associated with a fixed material point of suspension ; thus it must be solved 
simultaneously with the particle-path equation. However, it is more common to 
consider an Eulerian (field) description of the moment tensor ; for this purpose, we 
replace the full time derivative following a fixed material point by a convective 
derivative, assuming that the microstructure moves with the fluid. This yields 

R = K . R - K : R R R ,  K = R+GE, 

d 
dt 
- ( R R )  ( t )  = K .  ( R R )  + ( R R )  .uT- K: ( R R R R ) .  

(1.5b) 
D 
- ( R R )  ( t )  = K *  ( R R )  + ( R R ) * K ~ - K K :  ( R R R R ) .  
Dt 
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where the moments may now be interpreted as tensorJields over the spatial domain. 
By such a tensor field representation of the moment, one avoids the need to solve 
(explicitly) for particle paths in the flow. 

In order to solve a flow problem, one must have some means of accounting for the 
particle stress contribution in the macroscopic momentum balance, which is coupled 
with the solution of ( 1 . 5 ~ )  or (1 .5b)  a t  each point of space. There are important 
problems which may arise when one attempts to  solve flow problems using a direct 
moment evolution equation approach. These are (i) the closure problem, and (ii) the 
possibility of steep spatial gradients or even discontinuities in the moment tensor 
field obtained from (1.5b). We shall discuss each in turn. 

First, we discuss the closure problem. Note that in the present example, the 
evolution equation for the second moment ( ( R R ) )  ( 1 . 5 ~  or b )  involves the fourth 
moment. It is possible to derive an evolution equation for the fourth moment by the 
same procedure ; however, the resulting evolution equation involves the sixth 
moment. Thus the system of moment evolution equations can never be closed, as 
higher-order moments are always required. 

This closure problem is the typical situation in most microstructured fluids, but 
there are exceptions. For example, the second moment evolution equation is closed 
for the linear elastic dumbbell model of dilute polymer solutions that was considered 
earlier. The reason is that the dumbbell is assumed to rotate with the flow in an affine 
manner, and the elastic modulus of the dumbbell is modelled as linear. Thus the 
equation for dR/dt is linear in R ,  leading only t o  second moments when one derives 
an evolution for ( R R ) .  

In the usual case, where the moment evolution equations are not closed, some sort 
of approximation for higher-order moments is required if one wants to determine 
moments by integration of a closed set of moment evolution equations. Such 
approximations are referred to as closure approximations ; the standard trick is to 
write higher-order moments in terms of lower-order moments. Two examples of this 
sort of ad hoc approximation are linear (see Hinch & Leal 1975, 1976) 

(RRRR)( t )  = A + B ( R R ) ( t ) ,  

where A and B are constant tensors, and quadratic (see also Lipscomb et al. 1988 and 
Rosenberg et al. 1990): 

Both approximations lead to a closed set of equations, but both suffer from 
pathological behaviour even in very simple flow situations. The linear approximation 
has been shown to diverge in simple shear flows of suspensions of rigid particles with 
moderate to large aspect ratios by both Frattini & Fuller (1986) and Advani & 
Tucker (1987). The quadratic approximation fails to retain the tensorial symmetry 
of (RRRR).  Moreover, Altan et al. (1989) observe quite considerable quantitative 
discrepancies between these two closure approximations and the exact results 
obtained via the distribution function in simple shear, planar extensional and 
uniaxial extensional flows. Finally, in part 2 of this series (Szeri & Leal 1992), we 
report numerical results that demonstrate that some commonly employed closure 
approximations can lead to non-physical behaviour. It thus appears that the case for 
direct solution of moment evolution equations with closure approximations is weak, 
a t  best, even in the few very simple flows in which one can test the approximations. 

The second problem associated with the solution of equations of the type (1.5 b )  is 
of a more practical nature. Specifically, if one considers a tensor field representation 

(RRRR) ( t )  = [ ( R R )  (RR)I ( t ) .  
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of the moment, there may be very serious problems with spatial resolution of the 
tensor field, depending on the details of the flow situation. This subject has been 
investigated in detail by El-Kareh & Leal (1989). If the flow domain is simply 
connected, and if the initial moment field is smooth, then it is reasonable to expect 
that this smoothness will last indefinitely. However, if neighbouring material 
points have very different histories, e.g. they passed on either side of a submerged 
solid body, they may develop very different moments. I n  this way, one might 
imagine that a spatial discontinuity in the moment field could develop. Such a 
discontinuity would wreak havoc on standard numerical methods which assume 
continuity of the dependent variable so that convective derivatives such as the one 
in (1.5b) can be computed. 

For the special problem of a suspension of finitely extensible nonlinear elastic 
dumbbells, El-Kareh & Leal showed that the correct moment (field) evolution 
equation must include a spatial diffusion term, which would heal any discontinuities 
that might otherwise develop. However, the corresponding diffusion constant is 
extremely small; thus very large gradients could still exist in an Eulerian field 
description, even with the addition of the spatial diffusion term. 

I n  summary, the direct solution of moment evolution equations has the ambitious 
goal of eliminating the need to compute the distribution function associated with 
each material point of suspension. However, two important problems have arisen 
when pursuing this approach: (i) the closure problem, which depends on the details 
of the microdynamical equation, and (ii) the resolution of discontinuities or of large 
spatial gradients in an Eulerian field description, which depends on the details of the 
flow situation. 

1.4. The double-Lagrangian technique 

In  the present paper, we shall develop the theory behind a new technique for the 
solution of flow problems for microstructured fluids. Like the approach of direct 
calculation of moments, our goal is to eliminate the need to compute the distribution 
function. We pursue this goal by rearranging the governing equations of the problem. 
This is accomplished by exploiting a doubly Lagrangian representation of the 
distribution function : the representation is Lagrangian in physical space because we 
follow material points of the suspension ; as we shall see, the representation is also 
Lagrangian in conformation space. We shall demonstrate that this doubly Lagrangian 
point of view allows for an exact simplification of Brownian diffusion terms and of 
moment calculations. Moreover, a fast and efficient numerical scheme is naturally 
developed. 

1.5. Plan of the paper 

In  $2 we derive an alternative representation of distribution functions that is 
Lagrangian in conformation space. I n  $3, we show how the Lagrangian repre- 
sentation of distribution functions can simplify : (i) the calculation of moments of 
the distribution function, and (ii) Brownian diffusion. We then discuss a numerical 
scheme for the solution of flow problems, and, in $4, show how it  may be applied to 
different types of microstructured fluids. I n  $ 5 ,  we give our conclusions. 

Historically, our analysis stems from a recent theoretical study of the dynamics of 
a model microstructured fluid that is unaffected by Brownian diffusion (Szeri, 
Wiggins & Leal 1991, referred to hereinafter as SWL). I n  the Appendix, we briefly 
review the analysis of SWL and apply the idea of the present paper to give an 
analytic example of a Lagrangian representation of a distribution function. The 
example serves to expose the connection between the Eulerian and Lagrangian 
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points of view of conformation space. In part 2 of this series (Szeri & Leal 1992), we 
compute an example flow of a suspension of rigid, orientable particles using the 
techniques we develop here in part 1. The suspension is driven by a pressure gradient 
to flow between parallel flat plates. 

2. Lagrangian representation of distribution functions in conformation 
space 

The mathematical description of the state of the microstructure in terms of a 
distribution function is already Lagranqian in physical space because the distribution 
function is associated with a material point of the suspension. However, the usual 
representation of the distribution function is Eulerian in conformation space, i.e. the 
distribution function is represented as a scalar field that evolves in time and in 
‘position ’ in conformation space. In this section we introduce an alternative 
representation of the distribution function that is Lagrangian in conformation space. 
The result is a ‘double-Lagrangian’ representation that is (i) associated with a 
material point as it moves with the flow, and (ii) associated with a specific ‘material ’ 
point in conformation space as it evolves according to the microdynamical equations. 

The Lagrangian representation is easily approached from the Eulerian via the 
definition of $*, the Lagrangian representation of the distribution function : 

(2.1) 

where R(t ; R,) is the solution of the associated microdynamical equation (1 .1)  with 
initial condition R,. Additionally, R(t ; R,) may be interpreted as the coordinate map 
between the initial (or reference) configuration of the local structure at time t = 0 and 
the deformed configuration a t  time t .  The time derivative of $* is easily computed 
from the definition (2.1) and from the evolution equation for $, equation ( 1 . 2 ~ ) :  

$*(ti R,) = $ ( k  R )  IRPR(t;Ro)’ 

This equation may be rearranged to read 

Now let us examine the right-hand side of (2.2). The divergence may be written as 
the trace of the derivative, hence 

V-R = t r  [vR]. (2.3) 

Next we multiply the term in square brackets by the deformation gradient tensor and 
its inverse 

v - R  = t r  [vR(v,R) (V,R)-’I. (2.4) 

Here V, is to be interpreted as the derivative with respect to the reference 
configuration. By use of the chain rule, (2.4) may be rewritten as 

1 



556 

I ‘-4. 

FIGURE 1. Definition sketch for the modified spherical coordinates used to  describe the state of 
a microstructural element. 

Finally, one can compute the time derivative of the determinant of the deformation 
gradient tensor to show that (2.5) is equivalent to 

i a  
v.R = - det (V, R). 

det (V, R) at 

Thus, (2.2) may be rewritten 

i a  
det (V, R) at 

-det (V, R) 
i a  

$*ct; R,) at 
-$*( t ;Ro)  = - 

This equation may be integrated to  yield 

Thus, we have computed the Lagrangian form of the distribution function in terms 
of the coordinate map from reference to deformed configurations of the local 
structure. 

In order to solve flow problems, it is convenient to work in terms of coordinates. 
It will be necessary to describe both the reference and deformed configurations using 
coordinates. We use modiJied spherical polar coordinates for conformation space 
(p,  CT, 0)  with basis vectors (ep, e,, es). These coordinates (for the deformed con- 
figuration) are defined in figure 1.  As shown in this figure, CT is an angle in the (x, y)- 
plane, measured counterclockwise from the x-axis. The angle measured from the z- 
axis is i7c-8, and the radial coordinate is p. Note that when 6’ = 0, the axial vector 
of the particle lies in the (x, y)-plane (this choice is convenient for the analysis of two- 
dimensional flows). The rectangular components of the axial vector are 
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In the modified spherical polar coordinates, the director of an element of 
microstructure is R = pep; thus 

R = pep + pd COB Be, + pee,. 

The gradient operator in conformation space is 

Thus, the general microdynamical equation (1.1) may be written in component form 
as 

(2 .8b)  
v a  

a 
aP 

e = Y,(p, a,e;E(1),P(1),p)--P2B(log$), 

( 2 . 8 ~ )  

Finally, the initial conformation R, may be represented as (po,ao,Bo),  and the 

In order to describe the initial (reference) configuration, we use a similar 
coordinate system, although now we denote the coordinates (po, go, eO), and the basis 
vectors are (eP, E,, E , ) .  The gradient operator with respect to reference-configuration 
coordinates is 

p = Yp(p, a, 8 ;  E(t),  W), p )  - v- (1% 4). 

solution to (2.8) as (p ( t ;  P O ,  no, eo), a(t; P O ,  g o ,  eo) ,  Qt ; P O ,  ao, 80)). 

&, a 6, a a 
3Po Po cos 8 0  avo Po a00 

+--. v, = EP-+-- 

The deformation gradient tensor in conformation space is easily computed : 

cos e au P ae 
PPoaeo Po a*, Po aeo + 8, e,- - +& e --+gee,-- 

1 aP 

which has determinant 

In (2 .9) ,  we have used the standard notation for the Jacobian of a transformation, 
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Thus the Lagrangian form of the distribution function may be written 
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PW,, go, 8,) = a(p, g, e)  p2 --I. case -l 

$*co ;p0 ,  a,, 6,) a(po, go,  0,) pi cos 0, 
(2.10) 

In summary, the distribution function attached to a specific conformation time trace 
q5* evolves in a way that is completely determined by the map from the reference 
configuration coordinates (po, u,, 8,) to the deformed configuration coordinates 
(p( t  ;po,  go, O0),  g(t  ; p,, go, O0) ,  8(t ; po, go, O 0 ) ) .  The distribution function is related to a 
deformation gradient in conformation space. 

Of course, the coordinate change from (p ,  r, 8) to (po, go, 8,) is possible only when 
the determinant J ,  + 0. As we shall see in $3.2, it is the smoothness of the right-hand 
side and the nature of the Brownian force itself that prevents J3 = 0, and so the 
coordinate change is not pathological. 

It is of crucial importance to us that the distribution function is completely 
determined by the map of conformation space. It is this property that allows us to 
avoid calculating the distribution function when solving a flow problem. Instead, we 
compute the map, which evolves according to equations that are much more 
amenable to numerical solution than is (1.2a), as we show below. 

2.1. Lagrangian representation of the orientation distribution function for rigid 
microstructure 

Now we specialize the Lagrangian representation of the conformation distribution 
function to the case of microstructure consisting of rigid particles, where 
p ( t ; p , , r , ,  8,) = po for all time. The distribution function (f) for a specific material 
point evolves according to a Fokker-Planck equation analogous to (1.2a), but 
conformation space is now described completely by only two orientation coordinates 

f+ v.  lfR, = 0, 

(V, 6) : 

( 2 . 1 1 ~ )  
at 

where R = ~ ( R ; E ( t ) , S Z ( t ) , p ) - v V ( l o g  f ) .  

In  component form, we have 
R = cos Be, +be,, 

where 

(2.11b) 

(2.12 a) 

(2.12b) 

The Lagrangian representation in conformation space of the ODF, f *, is defined in 
a way that is analogous to (2.1). The Lagrangian representation o f f  evolves 
according to 

a 4 = Y,(g,8; E(t),SL(t),p)-vg(logf). 

where 

(2.13) 

This equation is equivalent to (2.7) in the coordinate-free framework. 
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2.2. Lagrangian representation of the orientation distribution function for rigid 
microstructure with directors R parallel to the (x, y )-plane 

Finally, we consider the special case of the ODF of microstructure consisting of rigid 
particles with all directors R lying parallel to the (2, y)-plane. This is a special case 
for two-dimensional flows that is useful for illustrative purposes. The ODF evolves 
according to (2.11 a ) ,  but in this case, 

R = ae,. 
In  coordinate form 

a 
aa 

c+ = y,(a; E(t),s(t),p)-v-(logf). (2.14) 

Once gain, we formulate and integrate a differential equation for f *  to yield a 
solution equivalent to (2.7), 

where 
aa 

J ,  = -. 
aa0 

(2.15) 

In this section, we have developed a Lagrangian formalism for representation of 
the conformation distribution function of a microstructured fluid. Although we shall 
return to this point later, it  is worth emphasizing that the Lagrangian representation 
would provide considerable computational advantage even if our goal were to 
calculate the distribution function, directly. Specifically, a numerical scheme based 
upon this approach is 'self-adaptive' in the sense that an equally spaced set of initial 
conditions will evolve following solution trajectories in conformation space. Thus, 
regions of conformation space with the highest conformational probability are 
ultimately represented by many material points, and conversely for regions of 
conformation space with the smallest conformation probability. 

3. Exploitation of the Lagrangian representation of distribution functions 
in conformation space 

Let us now consider the Lagrangian representation of moments of the distribution 
function, and of the Brownian contribution to the microdynamical equation. In  the 
process, we shall see that the Lagrangian approach offers additional advantages of 
very considerable importance for computation of flows of microstructured fluids. 
Specifically, we demonstrate that moments of distribution functions that are 
required by the constitutive relation may be computed in the reference configuration 
by a change of variables that exploits the Lagrangian representation of distribution 
functions. In addition, we show how to rewrite the Brownian diffusion term in the 
microdynamical equation in a way that does not involve the distribution function. 
The map from reference to deformed coordinates for conformation space may be 
computed from the resulting equation. This is equivalent to, but considerably more 
efficient than, computing the distribution function. 

3.1. Moments of distribution functions 
The Lagrangian representation of the distribution function facilitates the calculation 
of moments by enabling integration of the moment in the original, undeformed 
configuration. 
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As an example, we consider the second moment of the ODF for rigid 

(3.1) 

microstructure, 

( R R )  ( t )  = f ( R ,  t )  R @I R dR. I 
The evolution off is governed by a partial differential equation (2.1 1)  in the Eulerian 
representation of conformation space. Alternatively, we have the Lagrangian 
representation off, equation (2.13) ; the latter enables an easy change of variables as 
follows. Consider the second moment as being an integral in the deformed 
configuration. We can use the formal solution (2.13) to rewrite the moment as an 
integral in the reference (or initial) configuration as follows : 

( R R ) ( t )  = (f*(t;R,)R@IRdR 

= (f*(t;R,)R@Rdet(V,R)dR, 

= If * ( O ;  R,) R,) @ R(t ;  R,)1 dR,. (3.2) 

Depending on the initial state, (3.2) may simplify further. For example, for rigid 
microstructure with isotropic initial state, the second moment is simply 

The form (3.3) is a simple matter to compute if we know how each initial 
orientation transforms into the current configuration, i.e. if we know the map from 
reference to deformed conformations of the microstructure that follows the material 
point with which f is associated. 

In the same way, we can rewrite the fourth moment of the distribution function 
as 

(RRRR) ( t )  = If *(0 ; R,) [R(t ; R,) @ R(t ;  R,) 63 R(t ;  R,) @ R(t ;  Roll ~ R o .  (3.4) 

Note that the same information is required to compute the second and the fourth 
moments of the distribution function; we require only the coordinate map from 
reference to deformed configurations. 

In  order to simplify moment calculations, we have used (2.7) to change variables. 
Because (2.7) also applies in the case where there is a Brownian contribution to the 
particle dynamics, the moment simplification works whether or not the Brownian 
contribution is included. 

3.2. Brownian diffusion 

The rheological properties of suspensions depend on the dynamical behaviour of 
individual elements of the microstructure which are carried along by the flow. 
Microstructural dynamics, in turn, are the result of the competition between the 
ordering tendencies of the surrounding flow, and the randomizing effects of Brownian 
motion. For larger microstructural elements, it  may be possible to neglect the effects 
of Brownian diffusion. 

In  reality, the Brownian force on the microstructure is a rapidly and irregularly 
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fluctuating force that has an effect on the particle path, on the orientation and on the 
length of the microstructure. In this study, we are interested primarily in the 
relationship between the dynamical evolution of conformation of the microstructure 
and the rheology of the suspension. Therefore, we shall ignore the Brownian diffusion 
of microstructure across the pathlines of the flow. 

We concentrate instead on the effects that Brownian forces have on the 
conformation of individual elements of the microstructure in a small material volume 
of suspension. It is possible to  analyse the effects of a rapidly and irregularly 
fluctuating (Brownian) force on the solutions of the conformation evolution 
equations. However it is more convenient to make use of the usual assumption that 
the rate of change of the conformation has a Maxwellian distribution about the 
average. This is a natural assumption because it is possible to show, by statistical 
arguments, that  equilibration of the distribution function in momentum space occurs 
on a timescale that is several orders of magnitude faster than that for equilibration 
in conformation space. As shown by Bird et al. (1987), this allows one to write down 
a velocity-space averaged Brownian force term which depends on the gradient of the 
logarithm of the conformation (or orientation) distribution function, as in (1 .1) .  

An alternative route to  the representation of the Brownian diffusion term as the 
gradient of the logarithm of the distribution function is by an equilibrium analysis 
of gradient diffusion. This approach was used by Einstein (1956) to obtain the 
diffusion coefficients that are associated with the smoothing of inhomogeneities in 
the concentration of spheres in suspension. More recently, Russel (1981) has given a 
rigorous statistical-mechanical derivation of a similar result, but with hydrodynamic 
interactions taken into account. For a survey of the research in this area, see the 
review article by Russel (1981). 

Upon examination, (1.1) reveals that  the Brownian term tends to  smooth abrupt 
changes in the distribution function in conformation space. This is clear because the 
(averaged) Brownian diffusion pushes an individual element of the microstructure 
away from the direction of increasing conformational probability. 

Although the dynamics of an element of the microstructure acted upon by a 
rapidly and irregularly varying (stochastic) Brownian force are unpredictable, at 
least in detail, it is of crucial importance in the present discussion that the dynamics 
of an element of the microstructure that is acted upon by a velocity-space averaged 
Brownian force, that  is related to the distribution function, is  deterministic and 
predictable. This statement seems, a t  first, to be paradoxical. The paradox is resolved 
when one realizes that the solution of ( 1 . 1 )  corresponds not to an actual time trace 
of the state vector of a particular element of microstructure, but rather to  the time- 
trace of the local velocity-space average of the state vectors of elements of the ensemble 
which have a Maxwellian distribution about the mean rate of change of the 
conformation. 

Normally, one solves ( 1 . 1 )  in conjunction with (1.2a), the Eulerian form of the 
conservation statement for the distribution function. In  this section, we show how to 
solve (1 .1)  in conjunction with the Lagrangian representation of the conservation 
statement for the distribution function. Analytically, these two procedures are 
identical, i.e. no approximation is involved. Numerically, however, the use of the 
Lagrangian conservation statement allows for the development of fast, efficient, self- 
adaptive numerical algorithms for the solution of flow problems. 
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3.2.1. Calculation of the Brownian force term 
For simplicity of exposition, we work first in the coordinate-free framework. The 

Brownian term is 

Next, we substitute the Lagrangian form of the distribution function for the Eulerian 
form, using (2.1) and (2.7) 

The derivative V may be recast as a derivative with respect to  the reference 
configuration V, by changing variables ; this yields 

These expressions may also be written in terms of the coordinates introduced 
previously. For example, consider the case of initially isotropic, rigid microstructure 
confined to the (2, y)-plane. In coordinates, (3.6) takes the form 

Thus the full, rearranged microdynamical equation, which incorporates the 
Lagrangian conservation statement for the distribution function, is 

Thus, by making use of the Lagrangian conservation statement for the distribution 
function, we have been able to rewrite the microdynamical equation in an exactly 
equivalent form that does not involve the distribution function. I n  doing so, we have 
constructed (3.8), which may be thought of as a partial differential equation for the 
coordinate map uo+u ( t ;  u,). The coordinate map evaluated at a specific initial 
orientation cr;, say, evolves in exactly the same way as the solution to (1.1) and ( 1 . 2 ~ )  
with initial condition u;. All we have really done is to  replace the formulation 

af a a 
f9 = Yg-v- (logf), -+-@) = 0 au at aa 

by the formulation (3.8). The advantages of this restructuring of the governing 
equations will become clear when we formulate a numerical method for the solution 
of (3.8). 

Recall that the coordinate change from the current conformation coordinates (here 
u) to the reference conformation coordinates (uo) is possible only when the relevant 
Jacobian (here J , )  is non-zero. Upon examination, (3.8) reveals that the Brownian 
term is proportional to J T ~ ,  and in the direction that tends to  increase J ,  where J ,  
is low, and to decrease J ,  where J1 is high. Thus, the pathological situation J ,  = 0 
is avoided. Similar arguments apply in the two- and three-dimensional cases which 
we analyse below. 
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For rigid microstructure that orients in three dimensions, the Brownian term may 
be rewritten as 

* o ; g  e )coseo 
x(f ( J, O '  O -). case (3.9) 

Finally, for stretchable, orientable microstructure, the Brownian term is 

Of course, if the initial state of the conformation is relaxed, then (3.9) and (3.10) will 
take simpler forms. 

It is worth mentioning that this alternative way of computing the Brownian term 
involves no approximation whatsoever, except of course numerical approximation. 
Furthermore, the system (3.8) (or the analogous problems in two and three 
conformation space dimensions) is particularly advantageous in strongly orienting 
flows that lead to sharply varying distribution functions that are very difficult to 
resolve in the conventional Eulerian representation of the distribution function. 

3.3. The numerical solution of j b w  problems 
Let us now consider how one might solve a flow problem using the double- 
Lagrangian technique. First, let us fix some model equations assuming that we wish 
to solve a flow problem for microstructure consisting of 'particles ' suspended in a 
Newtonian fluid. Assuming that the stress tensor is partitioned into Newtonian and 
non-Newtonian parts, the momentum and continuity equations for an incompressible 
suspension are 

p - + u * v  u = -Vp+?/lV2u+V.(+"), v * u  = 0. 
(:t 1 

These field equations over the spatial domain, together with appropriate boundary 
conditions, could be approximated numerically by any of the standard techniques. 
The divergence of the particle contribution to the stress is to be left as a body force. 

The non-Newtonian stress for microstructured fluids is specified in terms of some 
moment(s) of the distribution function. Here, we advocate computing the non- 
Newtonian stress associated with a (sufficient) number of material points. Associated 
with each material point is a group of (a sufficient number of) elements of the 
suspended phase that evolves according to an equation like (l . l) ,  but with the 
Brownian force rewritten by the method of $3.2. In reality, the ensemble of 
suspended elements is specified as a set of initial conditions in conformation space. 
These elements of the suspended phase evolve in a way that provides a discretized 
form of the coordinate map from reference to deformed (or current) conformations 
for each material point. Thus it is a simple matter to compute the non-Newtonian 
stress for each material point, by using the discretized form of the coordinate map 
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to  rewrite the moment integral(s) over the reference configuration. Once the non- 
Newtonian stress is known for a set of material points distributed over the spatial 
domain, the body force in the momentum equation may be computed in a way that 
is appropriate for the numerical method being used. Of course, adequate resolution 
in conformation space and in physical space will, in general, depend on the details of 
the specific flow, as for any computational method. 

There are a number of interesting features that make this method of accounting 
for the non-Newtonian stress very attractive from a numerical point of view. The 
most important aspect is that the scheme we have just described is self-adaptive. To 
understand this, note that within the ensemble a t  each material point, the elements 
of the suspended phase stretch and orient in a natural way in response to the 
changing flow conditions, Brownian diffusion, etc. Because the discretized form of the 
coordinate map from reference to deformed conformation is obtained from the 
natural motion of elements of the suspended phase, resolution of the map will be 
greatest where the conformational probability is greatest. Moreover, a minimum of 
resolution is ‘wasted ’ on those regions of conformation space where conformational 
probability is least. 

A second attractive aspect of the computational scheme is that  the moment 
integrals for each material point care carried out in the reference configuration. This 
is especially convenient when the reference configuration is the relaxed state, for then 
fast and efficient algorithms for integration that rely on evenly spaced values of the 
integrand may be used. 

Thirdly, i t  is expected that the scheme we have outlined will suffer less from the 
second major problem faced by direct numerical integration of moment evolution 
equations, namely the development of steep spatial gradients (or indeed dis- 
continuity) in the moment tensor field. Because our scheme of accounting for the 
microstructure is Lagrangian in physical space, there are no spatial derivatives of the 
moment tensor field to discretize, as there are on the left-hand side of equation (1.5b), 
for example. Therefore, steep spatial gradients of the moment tensor field will not 
affect the integration of the microstructure evolution equations. Of course, steep 
spatial gradients in the non-Newtonian stress associated with the microstructure 
may still cause problems with the macroscopic mechanics, depending on what 
scheme is used to  solve the flow equations. 

Finally, we remark that the numerical scheme we have sketched here is especially 
amenable to vector and parallel solution. The ensemble of microstructural elements 
at each material point evolves over a time-step in a way that is independent of the 
ensembles a t  other material points, thus allowing for the evolution of each such 
ensemble to be calculated by a different processor. Within an ensemble, one could 
integrate the microdynamical equation(s) (of a type similar to  (3.8)) in a way that 
allows for fast vector processing. 

4. Examples of microstructured fluids to which our methods may be 
applied 

present methods may be applied : 
There are three primary characteristics of microstructured fluids to which the 

(i) distribution functions that evolve according to a classical conservation 

(ii) microdynamical equations (that may involve the distribution function) that 
equation that involves a microdynamical equation ; 

lead to smooth dependence of the conformation on initial conditions. 
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These two characteristics allow for a Lagrangian representation of the conservation 
statement, as in $2 ,  and for restructuring the microdynamical equations so as to 
eliminate explicit dependence on the distribution function, as in $3. The third 
characteristic, 

(iii) macroscopic properties of the suspension that involve the distribution 

allows for the calculation of the macroscopic properties of the fluid in terms of the 
Lagrangian representation of the distribution function. A large number of systems 
share these characteristics ; we shall mention some representative examples in what 
follows, though this is not meant to be an exhaustive list. For detailed descriptions 
of the equations and models we mention below, see Bird et al. (1987), Larson (1988) 
or Doi & Edwards (1986). 

function, possibly through moments, etc., 

4.1. Dilute suspensions of rigid ellipsoidal particles 
A dilute suspension of rigid ellipsoidal particles evolves according to equations that 
are in the form of our model equations (1.1) and ( 1 . 2 ~ ) :  

[E.R-E:RRR]-vV(logf), a f + V - ( f A )  = 0. (4.1) 
at 

Here R is the director (of constant length), r is the aspect ratio of the ellipsoids, and 
the Brownian diffusion coefficient is v = kT/R, ( k  is Boltzmann’s constant, T is the 
absolute temperature and R, is the resistance coefficient for rotation of a particle 
about a transverse axis through its centre). These equations also describe the 
evolution of a dilute suspension of rodlike particles (or fibres) in the limit r -+ 00. 

Detailed expressions for the viscous and entropic stress contributions in terms of 
second and fourth moments are available in Leal & Hinch (1971) and in Hinch & Leal 
(1972). Application of the double-Lagrangian technique to flows of suspensions of 
rigid ellipsoidal particles is advantageous, in order to avoid the closure problem of 
the direct moment evolution equation approach. 

4.2. Theories for semi-dilute suspensions of rodlike particles 
Theories for semi-dilute suspensions of rodlike particles (IRI = l ) ,  such as the theory 
due to Doi & Edwards (1986), augment (4.1) in the limit r -+ 00 with an orientation- 
dependent diffusion coeficient, thus : 

A = s .R+€ .R-€E:RRR-~(R)V( log f ) ,  Y + V . ( f & )  = 0, ( 4 . 2 ~ )  

where the orientation-dependent diffusion coefficient is (note that Q is just a dummy 
variable). 

at 

(4.2b) 

In this case, the solution of a flow problem by the double-Lagrangian technique is 
advantageous because it allows one to avoid the closure problem. An additional 
advantage concerns the diffusion coefficient. The orientation-dependent diffusion 
coefficient is commonly pre-averaged over R in order to obtain a useful direct 
moment evolution equation, but this is not necessary when using the double- 
Lagrangian technique. The reason is that the integral over conformation space in the 
diffusion coefficient (4.2b) may be recast as an integral over the reference 
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configuration using the method of $3.1. In other respects, the solution of flow 
problems for these suspensions is a straightforward application of the methods we 
have outlined. 

4.3. Theories for nematic polymers 

In the theory for nematic polymers due to Doi (1981), the equations for a semi-dilute 
solution of rodlike particles are augmented by a potential % that involves the tensor 
order parameter S, which may be expressed in terms of the second moment of the 
distribution function 

In this expression, / is the identity tensor. The equations that describe the evolution 
of R and f are 

S = (RR)) -41. 

2 = S?.*R+E*R--E:RRR-G(R)V(log f)-G(R)V - , (3 
f + V - ( f R )  at = 0, Q = const.-gU,kTRR:S. (4.3) 

Application of the double-Lagrangian technique is straightforward, except that the 
integrals in the orientation-dependent diffusion coefficient and in the potential Q are 
both written as integrals over the reference configuration by the methods of $3.1. 
Again, no pre-averaging is necessary. 

4.4. Dudbell models of dilute polymer solutions (including internal viscosity, 
hydrodynamic interaction, excluded volume, finite extensibility, conformation- 

dependent friction, etc.) 
This is a large class of models for polymer molecules in dilute solution. The f i s t  and 
simplest member of this class is the linear elastic dumbbell, due to Kuhn (1934) : 

4kT/3' 2kT R = Q-R+E-R-- 6 R - T V ( l o g $ ) ,  $+V.($d) = 0, (4.4) 

where 6 is a (constant) friction coefficient of the beads and 4kTP2R is the connector 
(Hookean) spring force. It is worth mentioning that this micromechanical model 
leads to an upper-convected Maxwell constitutive equation. Application of the 
double-Lagrangian technique to flows of suspensions of linear elastic dumbbells is 
straightforward. Note, however, that because the direct moment evolution equations 
for suspensions of simple linear elastic dumbbells are closed without approximation, 
the double-Lagrangian technique is not necessarily favoured for the solution of flow 
problems in this limiting case. On the other hand, a numerical scheme that is 
Lagrangian in physical space may address numerical difficulties associated with 
steep gradients in moment tensor fields. 

The simple model (4.4) was later changed to include internal viscosity of the 
dumbbell, yielding the microdynamical equation 

where the parameter e is the internal viscosity divided by the friction coefficient of 
the beads. Here, the double-Lagrangian technique is recommended for the solution 
of flow problems, because the internal viscosity leads to a closure problem in the 
direct moment evolution equations. 
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Another modification that has been made, in order to account for bead-bead 
hydrodynamic interaction involves the Oseen tensor 

( 4 . 6 ~ )  

Here ys is the viscosity of the solvent. The microdynamical equation is 

2kT 
(4.6b) R = Q * R + E *  R-- ( / -CO(R)) -  (2$R+V(log$)). 

Clearly, bead-bead hydrodynamic interactions will lead to a closure problem in 
deriving moment equations from (4.6 b ) ,  and the double-Lagrangian technique can be 
used with advantage. An additional point in favour of our methods is that although 
the Oseen tensor is normally pre-averaged, this is not necessary when solving a flow 
problem using the double-Lagrangian technique. 

Another modification to the simple dumbbell model is to include an excluded 
volume potential (Fixman 1966), which normally depends on the second moment 
( R R )  and on R . R .  If the excluded volume potential (8) is combined with the 
connector force potential (9’) into a total potential $‘- = 8+Y,  then the 
microdynamical equations are 

5 

These equations again exhibit the closure problem. However, the solution of flow 
problems using the double-Lagrangian technique is a simple matter if the moments 
in the excluded volume potential are recast as integrals over the reference 
configuration, using the method of $3.1. 

Finally, we mention the extension of the simple dumbbell to include finite 
extensibility and conformation-dependent friction. An important way to account for 
finite extensibility is to model the connector force by the Warner spring (Warner 
1972), 

( 4 . 8 ~ )  

where N is the number of subunits making up the macromolecule (each of length a ) ,  
and 1Rma,J = Nu is the total length of the extended macromolecule. The connector 
force limits the extension of the dumbbell through the asymptotic behaviour 

IEl+ 00 as IRI -+ IRnlaA. 
Also we include the conformation-dependent linear isotropic friction law (Hinch 
1977) 

(4.8b) 

Here FH is the force on bead i, ut is the undisturbed solvent velocity evaluated at the 
bead centre, r, is the position vector of the centre of bead i, 6, = 6m,-,&a is the 
equilibrium bead friction, where the equilibrium lengthscale of the dumbbell is &a. 
This leads to the microdynamical equation 
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Here C(lR1) is a conformation-dependent shape factor. Normally, the direct moment 
evolution equation is pre-averaged in an attempt to elude the closure problem, but 
this is unnecessary when solving a flow problem using the double-Lagrangian 
technique. 

4.5. Bead-spring chain models of polymer molecules in solution 
Closely related to the examples discussed above, which all involve particles that may 
only stretch and orient as a whole, are the many-bead models for polymer molecules 
in solution. These theories attempt to account for the many degrees of conformational 
freedom of flexible-coil polymer molecules in solution. An example is the Rouse 
chain, which involves a chain of beads connected by Hookean springs. The 
confirmation distribution function for the j t h  link in the chain @* (in ‘normal 
coordinates ’ R;) evolves according to the equation 

where H is the spring constant and a, = 4sin2(j7c/2N) are the eigenvalues of the 
Rouse matrix of the chain of N beads. In this case, one can apply the double- 
Lagrangian technique to each link in the N-bead chain to rewrite the Brownian term 
in the microdynamical equation in a way that does not involve the distribution 
function, and to compute the stresses that depend on moments such as (R; R;).  

4.6. Reptation models of concentrated polymer solutions and melts 
In the theory of concentrated polymer solutions and melts, one must account for the 
fact that the mobility of an individual polymer molecule is severely constrained by 
its neighbours, with the result that a dominant mode of deformation is a ‘ snakelike ’ 
motion along the contour of the molecule, which has become known as reptation. 
As reviewed in Bird et al. (1987) and in Doi & Edwards (1986), one can derive a single- 
link diffusion equation for the distribution function of orientation along the contour 
of the chain, f , (u,s , t ) .  Here u is a direction in orientation space, s is the arclength 
coordinate along the chain (0 < s < l ) ,  and the subscript 01 denotes the species. The 
distribution function evolves according to an equation of the form 

(4.10) 

Note that the gradient operators in (4.10) are in orientation space (u), but not in 
arclength space (s). Here the length of the chain is N,, the associated characteristic 
time is A,, and d is the reputation coefficient. At equilibrium, 8’ = 0;  in other words, 
in the absence of flow there is no reptation, only diffusion in orientation space. 
Away from equilibrium, 0 < B’ < 1 (see Bird et a l . ) ;  thus when the material flows, 
there is generally diffusion associated with both reptation and orientation. Note 
that when 8’ = 1 there is no reptation, and (4.10) is identical to the evolution 
equation for the distribution function of rigid ellipsoidal particles in the limit of 
aspect ratio r + CO. 

The double-Lagrangian technique is somewhat less straightforward to apply to 
theories of concentrated polymer solutions and melts due to the added complication 
of the arclength coordinate along the chain, s. The conformation space in which the 
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distribution function resides is rather more complicated than just the product of 
orientation and stretch spaces, say, as for dumbbell models of dilute polymer 
solutions. 

For simplicity of presentation, let us consider, for the moment, chains which lie in 
the (z,y)-plane; thus orientation space (u)  at each link along the chain is described 
by the single angle a. The distribution function under consideration is then a 
function of a, s and t .  The conformation space is the product of a line segment 
{s : 0 < s < l} and a circle {a:  0 < a < 2 7 ~ ) ;  i.e. the conformation space is a cylinder. 

Equation (4.10) may be written into the form 

(4.11) 

where we have dropped the subscript 01 from fa. The evolution equation for a is just 
the a-component of the term in parenthesis involving u in (4.10); we return to this 
point later. Now, we write the reptation term on the right-hand-side of (4.11) in a 
way that will facilitate application of the double-Lagrangian technique : 

af a a 
-+-(f&)+-(fi) = 0.  
at aa as 

(4.12 a )  

In  (4 .12a) ,  we have introduced an evolution equation for the arclength coordinate : 

(4.12 b )  

The equation for s describes reptational motion, in exactly the same way that the 
equation for a describes angular motion of links of the chain. 

In a planar flow, we can write the vorticity and rate-of-strain tensors in 
components as (see the Appendix) 

0 -& 0 i Y 0  .=[: 8 01, E = [ {  ;e (I] 

and the evolution equation for a as 

. w  Y €'P a 
2 2 A, aa 

= - - e  sin 2a + - cos 2m - 2- (log f (a,  s, t ) ) .  ( 4 . 1 2 ~ )  

Now, in applying the double-Lagrangian technique, we eliminate the distribution 
function f ( a , s , t )  from the system (4.12) in favour of the coordinate map 
(ao, so) + ( a ( t ;  go, so), s ( t ;  go, so)), which is a solution of (4.12b, c ) .  The Lagrangian 
form of the distribution function is 

f * ( t ;  a09 8 0 )  =f ( ~ ~ S ~ t ) l s - s ' ~ t ; u , , s O ~ . U - b ~ t ; u 0 , S O ) .  

By arguments similar to those presented in $ 2 ,  one arrives at the integrated form of 
the Lagrangian representation of the single-link distribution function : 

(4.13) 

Equation (4.13) is exactly equivalent to (4 .12a)  provided the Jacobian is non-zero. 
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The relaxed state of the distribution function is characterized by isotropy in 
orientation space (at each link along the chain), and homogeneity in arclength. Using 
(4.13), and assuming that the chain is initially in a relaxed state, one can rewrite 
(4.12b, c )  in the following way, analogous to the development of $3.2: 

. w  Y tfx a ( J , s )  
(T = --eein2a+-cos2(~+-5-~- 

2 2 ha a(a0,sO)' 

(4.14a) 

(4.14b) 

Of course, there are boundary conditions that must accompany (4.14), because the 
chain has ends, and because s must retain the sense of arclength. Assuming the initial 
state is relaxed, and that the ends of the chain are isotropic, the initial and boundary 
conditions for (4.14a, b )  are, respectively, 

s(t = 0 ; go,  so) = so, s(t ; (To,  so = 0) = 0, s(t ; go,  so = 1) = 
" ' (4 .14~)  

cr(t = o;ao,sO)  = ao, c r ( t ; go ,so  = 0) = go,  v(.t;vo,so = 1) = ao.J 

We have shown that the microdynamical equation for orientational and 
reptational modes may be integrated without computation of the single-link 
distribution function. In concentrated polymer solutions and melts, the stresses are 
computed as moments of the distribution function, integrated over orientation space 
and over arclength. These may be recast in the reference configuration in the manner 
demonstrated in $3.1. The extension of the present arguments to the case where the 
links in the chain are free to orient in three dimensions is straightforward. 

5. Conclusions 
In this paper, we have presented the theoretical basis for a new method for the 

solution of flow problems of microstructured fluids. Our method is centred on an 
equivalent representation of the conformation dynamics of local structure in a 
Lagrangian fashion in conformation space. There are several useful ramifications of 
this idea. The Lagrangian character of the method yields increased resolution in 
regions of conformation space where the conformational probability is high ; thus the 
numerical scheme we propose is self-adaptive. Moreover, there is no need to compute 
the distribution function explicitly in order to calculate moments or to account for 
Brownian effects. Finally, the deformed configuration of the local structure at any 
particular time is obtained as part of the solution, making the method especially 
attractive to apply to manufacturing problems in which the final conformation 
distribution of the local structure in a material that once flowed is the critical 
unknown. 

The work was supported, in part, by the Office of Naval Research and by the Fluid 
Mechanics Program of the National Science Foundation. 

Appendix. Analysis of a model microstructured fluid 
In this Appendix, we attempt to fix ideas by consideration of a specific 

microstructured fluid. The microdynamical equations for the evolution of the 
conformation of stretchable, orientable particles described by a single axial vector 
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are considered in SWL. For reference, we review that analysis here, especially for the 
important general case of the dynamics of microstructure in two-dimensional flows 
that are complex (unsteady or spatially inhomogeneous velocity gradient tensor) as 
opposcd to simple (steady and spatially homogeneous velocity gradient tensor). After 
we review the analysis of SWL (which does not include Brownian diffusion), we 
clcmonstrate that  one may solve for the Lagrangian form of the distribution function 
in terms of the mathematical structures they develop. 

A, 1.  The conformation evolution equations 

Olbricht, Rallison & Leal ( 1982) demonstrate that conformation evolution equations 
for scvcral types of microstructure may be collapsed down to the single vector 
equation of the form 

for cach ‘particle’. The orientation and lcngth of the particle are given by the state 
vector R.  Q and E are the vorticity and strain-rate tensors, respectively, and the 
parameters G, a and F correspond to the shape factor, the elastic modulus of the 
(linear) internal spring and the internal damping of the particle, respectively. The 
reader may refer to Olbricht et al. (1982) for the parameter values which yield the 
particular microdynamical equations encompassed by this model equation. For our 
purposes, it  is sufficient to  note that 01 2 0, F >, 0 and G is generally between 0 and 
1, although it may exceed 1 for certain exotic particles, as shown by Bretherton 
(1962). Note that the system (A 1) does not includc the effects of Brownian diffusion. 
Also, the linear spring term causes certain pathological behaviour, as discussed in 
SWL. Nevertheless (A 1 )  is an interesting and instructive system to study. 

We consider the evolution of the conformation of particles suspended in complex 
two-dimensional flows. Therefore, as in SWL, wc define a rectangular coordinate 
system (x ,  y, z )  where the flow occurs in the (z, y)-plane, although the particle is free 
to move out of the plane. In these coordinates, the vorticity and rate-of-strain 
tensors are 

0 -$d 0 

Here the flow parameters e (elongation), y (shear) and o (vorticity) depend on time 
through the motion of the particle in the unsteady, spatially inhomogeneous velocity 
field. In terms of the stream function the flow parameters are 

0)  = a 2 +  a 2 $  a2+ a 2 +  a z f i  e = -  
a x 2  a y 2  ’ axay’  Y=v-s. 

In the modified spherical polar coordinates of figure 1 ,  the evolution equations for the 
conformation variables (p,  (T, 8) are 

6 = $dwGesin2a+$2ycos2u, 

8 = -+G(ecos 2a+%sin2a)sin26, 

( e  cos 2a + iy sin 2a) cos2 6 - - a ] P .  
G 

F + l  

F L Y  242 
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The system ( A 2 )  is normally a non-autonomous system of ordinary differential 
equations when the velocity-gradient tensor of the surrounding fluid flow is unsteady 
or spatially inhomogeneous. I n  the very special case of simple flows, ( A  2 )  may be 
integrated by quadrature, as shown in SWL. 

A.2 .  Evolution of the conformation i n  complex flows 
When the surrounding flow is simple (and non-degenerate), then there is a single (or 
no) equilibrium orientation to which all initial orientations are asymptotic. This 
attracting orientation is steady, and therefore the meaning of attraction is based on 
the eigenvalues of the system ( A  2 )  evaluated a t  the stable equilibrium orientation. 

I n  complex flows, there may be analogous attracting orientation(s) of the 
microstructure. However, such attractors are generally time dependent rather than 
steady, and therefore we must expand on the notion of attraction. This observation 
lead SWL to consider directly the relative approach or separation of two distinct 
orientation time traces which are solutions of ( A  2 ) .  It was found that two 
orientations experience a net approach (separation) over the time interval [0,  TI 
whenever the quantity 

CE[a,,, a2,; 71 = 2Ge(t) cos (a(t ; ale) + a(t ; azo)) + G y ( t )  sin (a(t ; ale) + a(t ; a,,))] dt 

is positive (negative). This quantity is called the contraction exponent. It depends on 
the initial orientation of the particles, on the time interval, and implicitly on the flow 
parameters. The time traces a(t;cr,,) of the two orientations are determined by 
integration of (A 2 a ) .  CE is called the contraction exponent because the difference of 
two orientations changes as 

JOT 

over the time interval. A natural extension of this concept is to the approach/ 
separation of nearby orientations. In SWL the relationship 

e(T;  ao) = ~ ( 0 ;  a,) e-nCE[uo;T1, ( A  3) 
is established, where the nearby contraction exponent 

distinguishes the approach or separation of two integral curves a ( t ; a , )  and 
a(t; a , ) + e ( t ) ,  where e( t )  is small. 

By computing the nearby contraction exponent for the full range of initial 
orientations 0 < a, < 2n, one may determine which integral curve(s) will attract the 
others. This procedure varies according to whether the flow parameters are periodic 
with period T (a special but important case), or not periodic ; see SWL for the details. 

The other degrees of freedom O(t) and p ( t )  also evolve in a way which is related to 
the nearby contraction exponent. To be specific, we have the discrete time maps 

tan q T ;  go ,  6,) = e+CE[uo; T I  tan o,, (A 5) 
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These equations demonstrate that along attracting rs time traces, the axial vector of 
the microstructure moves into the plane of the two-dimensional flow, and that the 
particles may experience stretching provided that the history-dependent strong flow 
criterion 

is satisfied. 
Thus, through integration of (A2c)  over the time interval of interest and 

evaluation of the nearby contraction exponent, it is possible to characterize the 
dynamics of microstructure which follow the given particle path through the 
surrounding flow. One may identify the attracting and repelling orientations, and the 
evolution of the out-of-plane and stretch degrees of freedom of the particle directly 
from the nearby contraction exponent. Not surprisingly, the statistical distribution 
of microstructure conformation may also be related to the nearby contraction 
exponent, as we show in the next section. 

A.3. Solution for the distribution function 
We consider the model system, in which the Brownian diffusion is zero and da/dt and 
d8/dt are given by (A 2a, b ) .  For rigid microstructure, the Lagrangian representation 
of the ODF is (2.13). For the microdynamical equations (A2) ,  equation (2.13) 
combined with (A 3)-(A 5), yields 

Thus we see that the ODF evaluated on attracting (repelling) orientation time traces 
tends to increase (decrease). The Fokker-Planck equation need not be solved, as all 
the information is contained in the graph (ao, nCE[cr,; TI) ! 

For the microdynamical equations (A 2), equation (2.10) yields the Lagrangian 
representation of the distribution function for stretchable, orientable particles : 

nCE[a, ; t ]  + - 
F + l  ( A 9 )  

3F 

In the limit F + 00, we recover the rigid-particle result. Even in the full conformation 
evolution problem, we see that the distribution function evolves in a manner which 
is completely determined by the nearby contraction exponent. 

A.4. A specijc flow example 

Finally, we give an example of an unsteady, spatially homogeneous flow for which 
the evolution equation for the ODF is integrable, both in the classical Eulerian 
framework and in the Lagrangian framework. At the end of the example, we show 
that the two approaches yield the same result. 

The example flow is a time-dependent stagnation-point flow, with stream function 
@(z, y, t )  = xye(t) ,  where e ( t )  is the (unspecified) time-dependent elongation flow 
parameter. The shear and vorticity flow parameters are both zero in this example 
flow. We consider the ODF for rigid microstructure confined to the plane, for 
simplicity of exposition. Thus f(a, 8, t )  = f(a, t )  in this example. 

19-2 
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I n  the classical formulation, the Fokker-Planck evolution equation for the ODF 

(A 10) 

is 
af af 
at aa 
- -Ge(t)  sin ( 2 a ) -  = 2Ge(t) cos ( 2 a )  f(a, t ) .  

We solve this classical equation by the method of characteristics. To find the 
characteristics one must solve the associated equations 

da 
- Ge(t) sin ( 2 4  

dt df =-=  
1 2Ge(t) cos ( 2 4  f(a, t )  ' 

The first and second part yield the solution 

ul(a, t )  = tan (a) exp 2G e ( r )  dr  = c l ,  [ s :  I 
where c1 is a constant; the first and third parts yield the solution 

4 
1 

= c2 f) = fsin (2a) 

involving the constant c2. The solution to the Fokker-Planck equation is u2 = @(ul), 
where the function @ is determined from (non-degenerate) initial conditions. For 
microstructure in an isotropic initial state, we obtain the solution 

tan (u)exp[2G[e(r)dr] 

(A 11)  
x sin ( 2 a )  1 + tan2 (a) exp 46 e(r) dr  ( [ s: I)' 

f (a , t )  = 

Note that when t = 0, (A 11) gives the (isotropic) initial condition f(cr, t  = 0) = 1 /2x .  
Moreover, one can see that if e ( t )  is periodic with period T and zero mean, then the 
ODF returns to an isotropic state a t  t = nT, for positive integers n. This completes 
the solution of the classical Fokker-Planck equation for the ODF. 

Now we solve the same problem, but we use the Lagrangian representation of the 
distribution function. To solve the specific example problem, we begin by calculating 
the integral curves a(t; a,) from the evolution equation for a, (A 2 a ) .  This yields the 
result 

tan(a( t ;a , ) )  = tan(a,)exp -2G e ( r ) d r  . 

Because we know the time traces a(t;cr,), we can compute the nearby contraction 
exponent from (A 4). This calculation is 

[ s :  1 

1 dt 

1 -tan2 (a( t ;  a,)) 
1 + tan2 ( a ( t  ; a,)) 

nCE[a,;T] = JOT[2Ge(t) 

1 - tan2 (ao) exp 

1 + tan2 (u,) exp 
= Jr [2Ge( t )  

exp [4G 1; e ( r )  dr] + tan2 (a,) 

1 + tan2 (a,) 
= log exp [ - 2 6  JOT e ( r )  dr] I 



Solution of $ow problems of microstructured fluids. Part 1 575 

The Lagrangian representation for the (initially isotropic) ODF is given by equation 
(A 8), which in this case reads 

exp [,c 1 e ( ~ )  d ~ ]  + tan2 (a,) 
. (A 12) 

To check the Lagrangian representation against the Eulerian representation for the 
ODF, we simply substitute a(t;a,) for a in (A 11). One can easily show that the 
Lagrangian representation, (A 12), is recovered. 
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